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The utility of zinc selenolates for effecting nucleophilic cleavage of simple lactones and esters has been
investigated. When zinc selenolate generated via Zn/AlCl3-promoted cleavage of diselenides was reacted
with simple lactones and esters, efficient nucleophilic alkyl–oxygen bond cleavage proceeded generating
the corresponding carboxylic acids in moderate to excellent yields.

� 2008 Elsevier Ltd. All rights reserved.
The impact of organoselenium chemistry on modern organic
synthesis is undisputable.1 Once selenium is incorporated into a
substrate, it can be removed easily either via selenoxide syn-
elimination or [2,3]-sigmatropic rearrangement. In addition, the
carbon-selenium bond can be replaced by carbon–hydrogen,
carbon–halogen, carbon–lithium, or carbon–carbon bonds. Thus,
in general, organoselenium species can be introduced efficiently,
manipulated, and removed in a variety of ways under mild reaction
conditions. Also, the important roles of organoselenium in different
biochemical processes as antioxidant, anticancer, and antiviral
agents are well established.2

In spite of the fact that different methods and reagents for the
introduction of organoselenium moieties have been developed,
the reagent phenylselenolate (PhSe�) is the most convenient
organoselenium reagent and its role in effecting many synthetic
transformations is known.3–6
ll rights reserved.
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Several procedures for generating selenolates have been
reported,3a,d,e,5 but most suffer from serious disadvantages such
as odoriferous fumes and moisture sensitive selenium reagents,
strong basic reaction conditions, and the use of hazardous organic
solvents. Therefore, the development of a new synthetic procedure
using stable selenium reagents under mild and neutral conditions
would have significant synthetic value.

As far as we know, there are few reports using conventional
methods for generating sodium phenylselenolate as a potent
reagent for nucleophilic cleavage of esters and lactones.5 However,
these procedures have drawbacks such as the use of odoriferous,
unstable compounds like benzeneselenol, the use of incompatible
solvents such as HMPA or expensive crown ethers, and the neces-
sity for an inert atmosphere.

In continuation of our previous work on the synthetic applica-
tions of zinc selenolates,6 we now disclose that zinc selenolate,
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prepared in situ via reductive cleavage of diselenides in the pres-
ence of Zn/AlCl3, is an especially effective reagent for the nucleo-
philic cleavage of both esters and lactones under relatively mild
conditions (Scheme 1).

In order to optimize the reaction conditions with respect to
temperature, time, and the molar ratio of the catalyst, we first
studied the reaction of diphenyl diselenide with c-butyrolactone
as a model reaction in the presence of Zn/AlCl3. We found that
the reaction proceeded smoothly to give the corresponding c-
phenylselenylbutyric acid in a very good yield (Table 1, entry 1).
With optimum conditions in hand, the reactions of various lac-
tones were examined. Stirring a mixture of diaryl diselenide 1, zinc
dust, and anhydrous aluminum chloride in dry acetonitrile at 70 �C
Table 1
Nucleophilic cleavage of lactones with zinc arylselenolates

Entry Ar Lactone 3

1 Ph O

O

PhSe

2 Ph O

O

COCH3 PhSe

3 Ph O

O

CH3

PhSe

CH3

4 Ph O

O

n-Bu

PhSe

n-Bu

5 Ph O

O

n-Hex

PhSe

n-Hex

6 Ph O

O

PhSe

7 p-ClC6H4
O

O

p-ClC6H4S

8 p-ClC6H4
O

O

COCH3 p-ClC6H4S

9 a-Naphthyl O

O

α-Naphthyl

10 a-Naphthyl O

O

COCH3 α-Naphthyl

a References are provided for known compounds.
b Isolated yields.
under aerial conditions generates zinc selenolate 2; subsequent
addition of lactone 3 gave the desired product in moderate to
excellent yields.7 The results are summarized in Table 1. Different
zinc arylselenolates react with various five- and six-membered lac-
tones very efficiently. As the size of the substituent at the carbinol
carbon increases, the rate of the alkyl–oxygen cleavage process de-
creases (Table 1, entries 3–5) which is compatible with the SN2
nature of the reaction.

We also examined that the viability of zinc selenolate induced
nucleophilic lactone cleavage reactions with substrates containing
acidic protons (Table 1, entries 2, 8, and 10). Due to the nonbasic
nature of zinc selenolate,8 no lowering of the rate of the cleavage
process was observed, and the conversion of 3b to 4b proceeded
Producta Time (h) Yieldb (%)

COOH 4a5c 5 87

COCH3 4b5a 8 82

COOH
4c5a 24 70

COOH
4d5c 26 3011a

COOH
4e5a 24 2911b

COOH 4f5c 6 97

e COOH 4g 5 96

e COCH 4h 12 78

Se COOH 4i 6 89

Se COCH 4j 13 73



Table 2
Nucleophilic reaction of zinc phenylselenolate with esters

Entry Ester 5 Producta Yield (%)b Time (h)

1 COOCH3 COOH 6a12 95 5

2 COOCH2 COOH 6a12 90 11

3 COO

CH3

CH3

COOH 6a12 89 24

4 COO COOH 6a12 85 30

5 COOCH3

CH3

CH3

CH3 COOH

CH3

CH3

CH3 6b12 92 6

6 COOCH3O2N COOHO2N 6c12 90 6

7 CH2COOCH3 CH2COOH 6d12 92 5.5

8 CH2COOCH2 CH2COOH 6d12 88 12

a References are provided for known compounds.
b Isolated yields.
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with concurrent loss of carbon dioxide to yield the corresponding
ketone, at a rate comparable to the conversion of 3a to 4a. The
same activity is applicable for products 4h and 4j.

In another study, we investigated the utility of zinc selenolates
for nucleophilic cleavage of esters (Scheme 2). Upon exposure to
phenylselenolate anions, methyl esters (Table 2, entries 1 and 5–
7) underwent facile alkyl–oxygen cleavage reactions, irrespective
of how hindered the ester is. Excellent yields of cleavage products,
carboxylic acids, were obtained, despite a large increase in the rel-
ative degree of steric hindrance around the ester. No evidence of
acyl–oxygen cleavage leading to the corresponding selenol ester
was observed. According to the literature, SN2-type cleavage reac-
tions which employ nucleophiles such as halides, amines, tert-
butoxide, or thiocyanates usually work well only with methyl
esters.9 In contrast, selenolate anions react cleanly and in high
yields with a variety of more heavily substituted esters. Thus, ben-
zyl, cyclohexyl, and isopropyl esters (Table 2, entries 2, 8, 4, and 3,
respectively) react with selenolate anions to give the correspond-
ing acids in high yields. In addition, in all the conversions listed
in Table 2 (except entries 3 and 4), the related alkyl phenyl sele-
nide 7 was isolated in quantitative yield as a byproduct (Scheme 2).

In conclusion, we have reported a new, selective, simple, and
efficient one-pot procedure for SN2-type cleavage of lactones and
esters with zinc selenolates in the presence of Zn/AlCl3,10 under
atmospheric, neutral, and relatively mild reaction conditions in
moderate to excellent yields. Regarding operational simplicity
and cost, this method offers significant advantages over previously
reported methods.5a–c
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